
Describing Languages 
Syntactically

Regular expressions & regular grammars
Context free grammars



Subphases of Syntactic Analysis
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Tokens
A lexeme is a sequence of characters in the source program that 
matches the pattern for a token

• “word” from a program
• Ex: while,  char,  +,  z, 42

A token is a pair consisting of the lexeme (its spelling) and token type
• Ex:      int answer = 42; contains the following tokens

int (keyword)
answer (identifier)
= (operator)
42 (constant)
; (symbol)

• All tokens of the same kind can be interchanged without affecting the 
program’s phrase structure
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Tokens, Lexical Analyzer, and Parser
The lexical analyzer (also known as “scanner” or “lexer”)
• Reads characters from the source file, assembling them into 

lexemes
• Needs clear rules about how to assemble lexemes and identify 

their token type
• Skips over comments and white space

The parser only cares about token types, which it uses to construct 
phrase structures
• but must retain lexemes for operators, literals & identifiers to do 

contextual analysis later, and, eventually, code generation
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Grammars
• Noam Chomsky – linguist who defined a hierarchy of grammar 

classes, two of which are relevant to us

• Regular expressions and regular grammars describe the 
construction of tokens or terminals in the language
• A lexical analyzer can be built from a regular grammar (Lex, Flex)

• Context-free grammars (CFGs) describe the syntax of a language
• A parser can be built from a CFG (Yacc, Bison)
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Regular (type 3)

Context-free (type 2)

Context-sensitive (type 1)

Unrestricted (type 0)
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Regular Expressions (REs)
Describe the structure of terminals or strings in a language
• Think of a RE as a pattern for string generation

REs are closed under the following operations:
• Concatenation: if A and B are REs, then A·B (read as A prepended to B) is a RE.

• Union: if A and B are REs, then A|B (read as A or B) is a RE.

• Kleene Star: if A is a RE, then A* (read as 0 or more occurrences of A) is a RE.

• Kleene Plus: if A is a RE, then A+ (read as 1 or more occurrences of A) is a RE.

• Optional: if A is a RE, then A? (read as 0 or 1 occurrence of A) is a RE.

If R is a RE, then L(R) is the language described by R. 
A language is a regular language if it is described by some RE.
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Examples of Regular Expressions (REs)
• R = ϕ (empty set)
• R = ε (empty string)
• R = a  (single character a)
• R = a|b (a or b)
• R = ab  (the string ab)
• R = a*  (ε or a or aa or aaa and so on)
• R = a+  (a or aa or aaa and so on)
• R = a*(b+)a*  (b or ab or ba or abb or bba or bb and so on)
• Digit = 0|1|2|3|4|5|6|7|8|9 can be written [0-9]
• IntegerLiteral = Digit+
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Equivalence of REs and Finite Automata
Finite state machine (FSM), also known as finite automata (FA), is a 
state machine that takes a string of symbols as input and changes its 
state accordingly.

When a string is fed into the FA, it changes its state for each literal.
• If the input string is successfully processed and the FA reach its 

final state, it is accepted (i.e., the input string is a valid token of the 
language)

Languages recognized by FA are precisely the languages described 
by REs!
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Any RE can be expressed as a
Regular Grammar

• A (right) regular grammar (RG) consists of terminal symbols 
(alphabet), non-terminal symbols, a start symbol, and grammar 
rules consisting of one of the following forms:

𝐴 → 𝑎𝐵
𝐴 → 𝑎

where A and B represent any single non-terminal, and a
represents any single terminal or the empty string.

• We read 𝐴 → 𝑎𝐵 as “A generates (produces) 𝑎𝐵”

• Examples of rules that are not valid in a regular grammar:
𝐴 → 𝑎𝐵𝑐
𝐵 → 𝐶𝐷
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Right side contains no non-terminals
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Right side contains exactly one non-terminal & it’s the rightmost



Regular Expression & Regular Grammar
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Regular Expression: Regular Grammar:

𝑆 → 𝜖|𝑎𝑆
𝑆 → 𝜖|𝑎𝑆|𝑏𝑆

a*
(a|b)*

a*|b* 𝑆 → 𝜖|𝐴|𝐵
𝐴 → 𝑎|𝑎𝐴
𝐵 → 𝑏|𝑏𝐵

a*b 𝑆 → 𝑏|𝑎𝑆
ba* 𝑆 → 𝑏𝐴

𝐴 → 𝜖|𝑎𝐴
𝑆 → 𝜖|𝑎𝑏𝑆(ab)*
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Example: RE and RG for C variable names
Regular Expression:

[a-zA-Z_][a-zA-Z_0-9]*

Regular Grammar:

Alphabet          → Alphabet AlphaNumeric
Alphabet          → a|b|…|A|B|C|…|Z| _
AlphaNumeric → Alphabet AlphaNumeric |

Numeric AlphaNumeric | 𝜖
Numeric           → 0|1|….|9
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Example:
Integer Expression Language (IEL)

• Legal strings are any algebraic based on integer/float operations 
and integer/float literals

Examples:

2+3

(10+3)*5

((6/2) - (8%3) * 5)
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IEL Regular Expressions
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IEL Regular Grammar
Operation → ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘%’ 
Punctuation → ‘(‘ | ‘)’
IntLit → ‘0’ | PosDigits
FloatLit → ‘0’ ‘.’ Digits

→ ( ‘1’ | . . . | ‘9’) DFloat
DFloat → ‘.’ Digits

→ ( ‘0’ | . . . | ‘9’) DFloat
PosDigits → ( ‘1’ | . . . | ‘9’) 

→ ( ‘1’ | . . . | ‘9’) Digits
Digits → ( ‘0’ | . . . | ‘9’) 

→ ( ‘0’ | . . . | ‘9’) Digits
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Limitations of Regular Grammars
• In a regular grammar, every production rule has one of the 

following forms:
𝐴 → 𝑎𝐵
𝐴 → 𝑎

where A and B represent any single non-terminal, and a
represents any single terminal or the empty string.

• Ex: Describe the language {𝑎!𝑏𝑎"|𝑛,𝑚 > 0} with a regular 
grammar.

𝑆 → 𝑎𝑆|𝑎𝑋
𝑋 → 𝑏𝑌
𝑌 → 𝑎𝑌|𝑎
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Limitations of Regular Grammars
• In a regular grammar, every production rule has one of the 

following forms:
𝐴 → 𝑎𝐵
𝐴 → 𝑎

where A and B represent any single non-terminal, and a
represents any single terminal or the empty string.

• We cannot build a regular grammar to describe the language 
{𝑎!𝑏!|𝑛 > 0}

• This implies we cannot design a regular grammar to check for 
balanced parenthesis/braces.
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Context Free Grammars (CFGs)
• A grammar is a quadruple (Σ, 𝑉, 𝑆, 𝑅) four components:

• a finite set Σ of terminal symbols – the alphabet of the grammar,
• a finite set 𝑉 of non-terminals symbols,

• a  unique start symbol symbol 𝑆 ∈ 𝑉
• a finite set of grammar rules (or productions) 𝑅, with each rule having 

the form 𝛼 → 𝛽, where 𝛼 and 𝛽 are strings of non-terminals and 
terminals  - i.e., 𝛼, 𝛽 ∈ (Σ ∪ 𝑉)∗

• A context free grammar (CFG) has the restriction that 𝛼 is a single non-
terminal; a context sensitive grammar does not.

• A language that can be generated by a CFG is said to be a context free 
language.

• All regular grammars are context-free, but not all context free grammars 
are regular.
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IEL Context Free Grammar (& RE)
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CFG

RE
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Left and Right derivations
• Determined by the order in which we apply productions

• Left-derivation: expand the leftmost non-terminal first

• All tokens of the same kind can be interchanged without affecting the 
program’s phrase structure
• For example, literal 5 and 2 are both tokens of type intT
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Example:
A left-derivation of  (5 − 2) ∗ 6
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Grammar:

Derivation: Exp  → Exp Op Exp                                (1)
→ lpT Exp rPt Op Exp                    (3)
→ lpT Exp Op Exp rPt Op Exp        (1)
→ lpT intT Op Exp rPt Op Exp      (2)
→ lpT intT subT Exp rPt Op Exp     (4)  
→ lpT intT subT intT rPt Op Exp     (2)
→ lpT intT subT intT rPt mulT Exp (4)
→ lpT intT subT intT rPt mulT intT (2)

(    5      - 2     )     *       6
Syntactic Analysis



CFG: A simple example
Consider the following (imperfect!) CFG for arithmetic expressions
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Grammar: 
(1) E → E + E
(2) E → E - E
(3) E → E * E
(4) E → E / E
(5) E → ( E )
(6) E → id

Find a left derivation of (a+b)*c

E → E * E            (3)
→ (E) * E          (5)
→ (E + E) * E   (1)
→ (id + E) * E   (6)
→ (id + id) * E  (6)
→ (id + id) * id  (6)

Syntactic Analysis



CFG: A simple example
Consider the following (imperfect!) CFG for arithmetic expressions
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Grammar: 
(1) E → E + E
(2) E → E - E
(3) E → E * E
(4) E → E / E
(5) E → ( E )
(6) E → id

Find a left derivation of a * b + c

E → E + E           (1)
→ E * E + E   (3)
→ id * E + E   (6)
→ id * id + E (6)
→ id * id + id    (6)

E → E * E           (3)
→ id * E           (6)
→ id * E + E   (1)
→ id * id + E (6)
→ id * id + id    (6)

OR
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CFG: A simple example
Consider the following (imperfect!) CFG for arithmetic expressions
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Find a left derivation of a * b + c

E → E + E           (1)
→ E * E + E   (3)
→ id * E + E   (6)
→ id * id + E (6)
→ id * id + id    (6)

E → E * E           (3)
→ id * E           (6)
→ id * E + E   (1)
→ id * id + E (6)
→ id * id + id    (6)

E

E     +     E

id id

E     *     E id

E

E     *     E

id id

E     +     Eid

OR

Parse Trees:
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Operator Precedence & Associativity
• A grammar that produces more than one parse tree for a sentence is 
ambiguous.

• Precedence determines the order in which operators of different levels 
of precedence are executed
• Ex: a * b + c Þ (a * b) + c

• Associativity determines the order in which operators of the same
precedence are executed
• Left associative – operations are grouped from the left

• Ex: a + b + c Þ (a + b) + c
• Right associative – operations are grouped from the right

• Ex: a = b = c; Þ a = (b = c);   // valid in C
• Solution: Revise the grammar to remove the ambiguity – must describe 

the same language though!
• Let the new grammar reflect operator precedence and associativity.
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CFG for Arithmetic Expressions
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Grammar:
(1) Expr  ® Expr + Term
(2) Expr  ® Term
(3) Term ® Term * Factor
(4) Term ® Factor
(5) Factor ® ( Expr )
(6) Factor ® id

Find a left derivation of a * b + c
Expr ® Expr + Term

® Term * Factor + Term
® Factor * Factor + Term
® id * Factor + Term 
® id * id + Term 
® id * id + Factor 
® id * id + id
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Left / Right Recursive Grammars
• Left Recursive: S ® S a Q

• Right Recursive S ® Q a S

• Later, we’ll see that some parsing strategies cannot be applied to 
grammars with left recursion
• There are techniques to remove left recursion
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