Describing Languages Syntactically

Regular expressions & regular grammars Context free grammars

Subphases of Syntactic Analysis

Tokenizer provides a stream of *tokens* to the parser

Syntactic Analysis

Tokens

A lexeme is a sequence of characters in the source program that matches the pattern for a token

- "word" from a program
- Ex:while, char, +, z, 42

A token is a pair consisting of the lexeme (its spelling) and token type

- Ex: int answer = 42; contains the following tokens int (keyword)
 - answer (identifier)
 - = (operator)
 - 42 (constant)
 - ; (symbol)
- All tokens of the same kind can be interchanged without affecting the program's phrase structure

Tokens, Lexical Analyzer, and Parser

The lexical analyzer (also known as "scanner" or "lexer")

- Reads characters from the source file, assembling them into lexemes
- Needs clear rules about how to assemble lexemes and identify their token type
- Skips over comments and white space

The parser only cares about token types, which it uses to construct phrase structures

• but must retain lexemes for operators, literals & identifiers to do contextual analysis later, and, eventually, code generation

Grammars

 Noam Chomsky – linguist who defined a hierarchy of grammar classes, two of which are relevant to us

- **Regular expressions** and **regular grammars** describe the construction of tokens or terminals in the language
 - A lexical analyzer can be built from a regular grammar (Lex, Flex)
- Context-free grammars (CFGs) describe the syntax of a language
 - A parser can be built from a CFG (Yacc, Bison)

Regular Expressions (REs)

Describe the structure of terminals or strings in a language

• Think of a RE as a pattern for string generation

REs are closed under the following operations:

- Concatenation: if A and B are REs, then A·B (read as A prepended to B) is a RE.
- Union: if A and B are REs, then A|B (read as A or B) is a RE.
- Kleene Star: if A is a RE, then A* (read as 0 or more occurrences of A) is a RE.
- Kleene Plus: if A is a RE, then A+ (read as 1 or more occurrences of A) is a RE.
- Optional: if A is a RE, then A? (read as 0 or 1 occurrence of A) is a RE.

If R is a RE, then L(R) is the language described by R.

A language is a **regular** language if it is described by some RE.

Examples of Regular Expressions (REs)

- $R = \varphi$ (*empty set*)
- $R = \epsilon$ (*empty string*)
- R = a (single character a)
- R = a | b (a or b)
- R = ab (*the string* ab)
- $R = a^*$ (ε or a or aa or aaa and so on)
- R = a+ (a or aa or aaa and so on)
- R = a*(b+)a* (b or ab or ba or abb or bba or bb and so on)
- Digit = 0|1|2|3|4|5|6|7|8|9 can be written [0-9]
- IntegerLiteral = Digit+

Equivalence of REs and Finite Automata

Finite state machine (FSM), also known as finite automata (FA), is a state machine that takes a string of symbols as input and changes its state accordingly.

When a string is fed into the FA, it changes its state for each literal.

• If the input string is successfully processed and the FA reach its final state, it is *accepted* (i.e., the input string is a valid token of the language)

Languages recognized by FA are precisely the languages described by REs!

Any RE can be expressed as a Regular Grammar

• A (*right*) regular grammar (RG) consists of terminal symbols (alphabet), non-terminal symbols, a start symbol, and grammar rules consisting of one of the following forms:

 $A \rightarrow aB$ Right side contains exactly one non-terminal & it's the **rightmost** $A \rightarrow a$ Right side contains no non-terminals where A and B represent any single non-terminal, and a represents any single terminal or the empty string.

- We read $A \rightarrow aB$ as "A generates (produces) aB"
- Examples of rules that are not valid in a regular grammar: $A \rightarrow aBc$ $B \rightarrow CD$

Regular Expression & Regular Grammar

Regular Expression:	Regular Grammar:
a*	$S \to \epsilon aS$
(a b)*	$S \rightarrow \epsilon aS bS$
a* b*	$S \to \epsilon A B$
	$A \rightarrow a a A$
	$B \rightarrow b b B$
a*b	$S \rightarrow b aS$
ba*	$S \rightarrow bA$
	$A \to \epsilon aA$
(ab)*	$S \rightarrow \epsilon abS$

Example: RE and RG for C variable names

Regular Expression:

[a-zA-Z_][a-zA-Z_0-9]*

Regular Grammar:

- Alphabet \rightarrow Alphabet AlphaNumeric
- Alphabet $\rightarrow a|b|...|A|B|C|...|Z|_$
- AlphaNumeric \rightarrow Alphabet AlphaNumeric | Numeric AlphaNumeric | ϵ

Numeric $\rightarrow 0|1|....|9$

Example: Integer Expression Language (IEL)

• Legal strings are any algebraic based on integer/float operations and integer/float literals

Examples:

2+3

(10+3)*5 ((6/2) - (8%3) * 5)

IEL Regular Expressions

Category	Token Class	Regular Expression
Operations	addT	+
	subT	-
	mulT	*
	divT	/
	modT	%
Punctuation	lpT	(
	rpT)
Literals	intT	$0 \mid [1-9][0-9]^*$
	fltT	$(0 \mid [1-9][0-9]^*) \cdot [0-9]^+$

IEL Regular Grammar

Operation \rightarrow '+' | '-' | '*' | '/' | '%' Punctuation \rightarrow '(' | ')' IntLit \rightarrow '0' | PosDigits FloatLit \rightarrow '0' '.' Digits \rightarrow ('1' | . . . | '9') DFloat \rightarrow \therefore Digits DFloat \rightarrow ('0' | . . . | '9') DFloat PosDigits \rightarrow ('1' | ... | '9') \rightarrow ('1' | . . . | '9') Digits \rightarrow ('0' | ... | '9') Digits \rightarrow ('0' | . . . | '9') Digits

Limitations of Regular Grammars

• In a regular grammar, every production rule has one of the following forms:

$$A \rightarrow aB$$

 $A \rightarrow a$

where A and B represent any single non-terminal, and a represents any single terminal or the empty string.

• Ex: Describe the language $\{a^nba^m|n,m>0\}$ with a regular grammar.

 $S \to aS | aX$ $X \to bY$ $Y \to aY | a$

Limitations of Regular Grammars

• In a regular grammar, every production rule has one of the following forms:

 $A \rightarrow aB$

 $A \rightarrow a$

where A and B represent any single non-terminal, and a represents any single terminal or the empty string.

- We cannot build a regular grammar to describe the language $\{a^nb^n|n>0\}$
- This implies we cannot design a regular grammar to check for balanced parenthesis/braces.

Context Free Grammars (CFGs)

- A grammar is a quadruple (Σ, V, S, R) four components:
 - a finite set Σ of **terminal** symbols the alphabet of the grammar,
 - a finite set V of **non-terminals** symbols,
 - a unique start symbol symbol $S \in V$
 - a finite set of **grammar rules** (or **productions**) R, with each rule having the form $\alpha \rightarrow \beta$, where α and β are strings of non-terminals and terminals i.e., $\alpha, \beta \in (\Sigma \cup V)^*$
- A context free grammar (CFG) has the restriction that α is a single non-terminal; a context sensitive grammar does not.
- A language that can be generated by a CFG is said to be a context free language.
- All regular grammars are context-free, but not all context free grammars are regular.

IEL Context Free Grammar (& RE)

- (1) Exp \rightarrow Exp Op Exp
- (2) $\rightarrow \text{intT}$

CFG

- $(3) \qquad \rightarrow lpT Exp rpT$
- (4) Op \rightarrow addT | subT | mulT | divT | modT

Category	Token Class	Regular Expression
Operations	addT	+
	subT	-
	mulT	*
	divT	1
	modT	%
Punctuation	lpT	(
	rpT)
Literals	intT	$0 \mid [1-9][0-9]^*$
	fltT	$(0 \mid [1-9][0-9]^*) \cdot [0-9]^+$

RE

Left and Right derivations

- Determined by the order in which we apply productions
- *Left*-derivation: expand the *leftmost* non-terminal first
- All tokens of the same kind can be interchanged without affecting the program's phrase structure
 - For example, literal 5 and 2 are both tokens of type intT

Example: A left-derivation of (5 - 2) * 6

Grammar: (1) Exp \rightarrow Exp Op Exp (2) \rightarrow intT $(3) \qquad \rightarrow lpT Exp rpT$ (4) Op \rightarrow addT | subT | mulT | divT | modT Derivation: $Exp \rightarrow \underline{Exp} Op Exp$ (1) \rightarrow lpT Exp rPt Op Exp (3) \rightarrow IpT Exp Op Exp rPt Op Exp (1) \rightarrow IpT intT Op Exp rPt Op Exp (2) \rightarrow lpT intT subT Exp rPt Op Exp (4) \rightarrow lpT intT subT intT rPt Op Exp (2) \rightarrow lpT intT subT intT rPt mulT Exp (4) \rightarrow IpT intT subT intT rPt mulT intT (2) (5 - 2) * 6

CFG: A simple example

Consider the following (imperfect!) CFG for arithmetic expressions

Grammar:	Find a left derivation of (a+b)*c		
(1) $E \rightarrow E + E$	$E \rightarrow E * E$ (3)		
(2) $E \rightarrow E - E$	\rightarrow (E) * E (5)		
(3) $E \rightarrow E * E$	\rightarrow (E + E) * E (1)		
(4) $E \rightarrow E / E$	\rightarrow (id + E) * E (6)		
(5) $E \rightarrow (E)$	\rightarrow (id + id) * E (6)		
(6) $E \rightarrow id$	\rightarrow (id + id) * id (6)		

CFG: A simple example

Consider the following (imperfect!) CFG for arithmetic expressions

Grammar:	Find a left derivation of a * b + c		
(1) $E \rightarrow E + E$	$E \rightarrow E + E$	(1)	
$(2) \to E - E$	\rightarrow E * E + E	(3)	
$(-) - \rightarrow F * F$	\rightarrow id * E + E	(6)	
$(3) \vdash \downarrow \vdash \downarrow \vdash \downarrow$ $(4) \vdash \rightarrow \vdash / \vdash$	\rightarrow id * id +	E (6)	
$(1) \vdash (1) $	\rightarrow id * id + i	id (6)	
$\langle \circ \rangle = \langle \circ \rangle \langle - \rangle$	OR		
(6) $E \rightarrow id$	$E \rightarrow E * E$	(3)	
	\rightarrow id * E	(6)	
	\rightarrow id * E +	E (1)	
	\rightarrow id * id +	E (6)	
	Syntactic Analysis \rightarrow id * id +	id (6)	

22

CFG: A simple example

Consider the following (imperfect!) CFG for arithmetic expressions

Operator Precedence & Associativity

- A grammar that produces more than one parse tree for a sentence is *ambiguous*.
- **Precedence** determines the order in which operators of *different* levels of precedence are executed
 - Ex: $a * b + c \Longrightarrow (a * b) + c$
- Associativity determines the order in which operators of the *same* precedence are executed
 - Left associative operations are grouped from the left
 - Ex: $a + b + c \Rightarrow (a + b) + c$
 - Right associative operations are grouped from the right
 - Ex: a = b = c; $\Rightarrow a = (b = c)$; // valid in C
- Solution: Revise the grammar to remove the ambiguity must describe the same language though!
 - Let the new grammar reflect operator precedence and associativity.

CFG for Arithmetic Expressions

Grammar:

- (1) Expr \rightarrow Expr + Term
- (2) Expr \rightarrow Term
- (3) Term \rightarrow Term * Factor
- (4) Term \rightarrow Factor
- (5) Factor \rightarrow (Expr)
- (6) Factor \rightarrow id

Find a left derivation of a * b + c

- $Expr \rightarrow Expr + Term$
 - \rightarrow Term * Factor + Term
 - \rightarrow Factor * Factor + Term
 - \rightarrow id * Factor + Term
 - \rightarrow id * id + Term
 - \rightarrow id * id + Factor
 - \rightarrow id * id + id

Left / Right Recursive Grammars

- Left Recursive: $S \rightarrow S a Q$
- Right Recursive $S \rightarrow Q a S$
- Later, we'll see that some parsing strategies cannot be applied to grammars with left recursion
 - There are techniques to remove left recursion