
Describing Languages
Syntactically

Regular expressions & regular grammars
Context free grammars

Subphases of Syntactic Analysis

2

Syntactic Analysis

Lexical
analysis

Syntax
analysis

Syntax
Tree

Source
Program

Tokenizer Parser

Source program
is viewed as a
stream of characters

Tokenizer provides a stream
of tokens to the parser

Tokenizer assembles characters
into a lexeme and classifies the
lexeme into a token type

Parser assembles tokens into
phrases according to the source
languageʼs grammar

Parser generates an AST
representation of the source program

Syntactic Analysis

Tokens
A lexeme is a sequence of characters in the source program that
matches the pattern for a token

• “word” from a program
• Ex: while, char, +, z, 42

A token is a pair consisting of the lexeme (its spelling) and token type
• Ex: int answer = 42; contains the following tokens

int (keyword)
answer (identifier)
= (operator)
42 (constant)
; (symbol)

• All tokens of the same kind can be interchanged without affecting the
program’s phrase structure

3Syntactic Analysis

Tokens, Lexical Analyzer, and Parser
The lexical analyzer (also known as “scanner” or “lexer”)
• Reads characters from the source file, assembling them into

lexemes
• Needs clear rules about how to assemble lexemes and identify

their token type
• Skips over comments and white space

The parser only cares about token types, which it uses to construct
phrase structures
• but must retain lexemes for operators, literals & identifiers to do

contextual analysis later, and, eventually, code generation

4Syntactic Analysis

Grammars
• Noam Chomsky – linguist who defined a hierarchy of grammar

classes, two of which are relevant to us

• Regular expressions and regular grammars describe the
construction of tokens or terminals in the language
• A lexical analyzer can be built from a regular grammar (Lex, Flex)

• Context-free grammars (CFGs) describe the syntax of a language
• A parser can be built from a CFG (Yacc, Bison)

5

Regular (type 3)

Context-free (type 2)

Context-sensitive (type 1)

Unrestricted (type 0)

Syntactic Analysis

Regular Expressions (REs)
Describe the structure of terminals or strings in a language
• Think of a RE as a pattern for string generation

REs are closed under the following operations:
• Concatenation: if A and B are REs, then A·B (read as A prepended to B) is a RE.

• Union: if A and B are REs, then A|B (read as A or B) is a RE.

• Kleene Star: if A is a RE, then A* (read as 0 or more occurrences of A) is a RE.

• Kleene Plus: if A is a RE, then A+ (read as 1 or more occurrences of A) is a RE.

• Optional: if A is a RE, then A? (read as 0 or 1 occurrence of A) is a RE.

If R is a RE, then L(R) is the language described by R.
A language is a regular language if it is described by some RE.

6Syntactic Analysis

Examples of Regular Expressions (REs)
• R = ϕ (empty set)
• R = ε (empty string)
• R = a (single character a)
• R = a|b (a or b)
• R = ab (the string ab)
• R = a* (ε or a or aa or aaa and so on)
• R = a+ (a or aa or aaa and so on)
• R = a*(b+)a* (b or ab or ba or abb or bba or bb and so on)
• Digit = 0|1|2|3|4|5|6|7|8|9 can be written [0-9]
• IntegerLiteral = Digit+

7Syntactic Analysis

Equivalence of REs and Finite Automata
Finite state machine (FSM), also known as finite automata (FA), is a
state machine that takes a string of symbols as input and changes its
state accordingly.

When a string is fed into the FA, it changes its state for each literal.
• If the input string is successfully processed and the FA reach its

final state, it is accepted (i.e., the input string is a valid token of the
language)

Languages recognized by FA are precisely the languages described
by REs!

8Syntactic Analysis

Any RE can be expressed as a
Regular Grammar

• A (right) regular grammar (RG) consists of terminal symbols
(alphabet), non-terminal symbols, a start symbol, and grammar
rules consisting of one of the following forms:

𝐴 → 𝑎𝐵
𝐴 → 𝑎

where A and B represent any single non-terminal, and a
represents any single terminal or the empty string.

• We read 𝐴 → 𝑎𝐵 as “A generates (produces) 𝑎𝐵”

• Examples of rules that are not valid in a regular grammar:
𝐴 → 𝑎𝐵𝑐
𝐵 → 𝐶𝐷

9

Right side contains no non-terminals

Syntactic Analysis

Right side contains exactly one non-terminal & it’s the rightmost

Regular Expression & Regular Grammar

10

Regular Expression: Regular Grammar:

𝑆 → 𝜖|𝑎𝑆
𝑆 → 𝜖|𝑎𝑆|𝑏𝑆

a*
(a|b)*

a*|b* 𝑆 → 𝜖|𝐴|𝐵
𝐴 → 𝑎|𝑎𝐴
𝐵 → 𝑏|𝑏𝐵

a*b 𝑆 → 𝑏|𝑎𝑆
ba* 𝑆 → 𝑏𝐴

𝐴 → 𝜖|𝑎𝐴
𝑆 → 𝜖|𝑎𝑏𝑆(ab)*

Syntactic Analysis

Example: RE and RG for C variable names
Regular Expression:

[a-zA-Z_][a-zA-Z_0-9]*

Regular Grammar:

Alphabet → Alphabet AlphaNumeric
Alphabet → a|b|…|A|B|C|…|Z| _
AlphaNumeric → Alphabet AlphaNumeric |

Numeric AlphaNumeric | 𝜖
Numeric → 0|1|….|9

11Syntactic Analysis

Example:
Integer Expression Language (IEL)

• Legal strings are any algebraic based on integer/float operations
and integer/float literals

Examples:

2+3

(10+3)*5

((6/2) - (8%3) * 5)

12Syntactic Analysis

IEL Regular Expressions

13Syntactic Analysis

IEL Regular Grammar
Operation → ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘%’
Punctuation → ‘(‘ | ‘)’
IntLit → ‘0’ | PosDigits
FloatLit → ‘0’ ‘.’ Digits

→ (‘1’ | . . . | ‘9’) DFloat
DFloat → ‘.’ Digits

→ (‘0’ | . . . | ‘9’) DFloat
PosDigits → (‘1’ | . . . | ‘9’)

→ (‘1’ | . . . | ‘9’) Digits
Digits → (‘0’ | . . . | ‘9’)

→ (‘0’ | . . . | ‘9’) Digits

14Syntactic Analysis

Limitations of Regular Grammars
• In a regular grammar, every production rule has one of the

following forms:
𝐴 → 𝑎𝐵
𝐴 → 𝑎

where A and B represent any single non-terminal, and a
represents any single terminal or the empty string.

• Ex: Describe the language {𝑎!𝑏𝑎"|𝑛,𝑚 > 0} with a regular
grammar.

𝑆 → 𝑎𝑆|𝑎𝑋
𝑋 → 𝑏𝑌
𝑌 → 𝑎𝑌|𝑎

15Syntactic Analysis

Limitations of Regular Grammars
• In a regular grammar, every production rule has one of the

following forms:
𝐴 → 𝑎𝐵
𝐴 → 𝑎

where A and B represent any single non-terminal, and a
represents any single terminal or the empty string.

• We cannot build a regular grammar to describe the language
{𝑎!𝑏!|𝑛 > 0}

• This implies we cannot design a regular grammar to check for
balanced parenthesis/braces.

16Syntactic Analysis

Context Free Grammars (CFGs)
• A grammar is a quadruple (Σ, 𝑉, 𝑆, 𝑅) four components:

• a finite set Σ of terminal symbols – the alphabet of the grammar,
• a finite set 𝑉 of non-terminals symbols,

• a unique start symbol symbol 𝑆 ∈ 𝑉
• a finite set of grammar rules (or productions) 𝑅, with each rule having

the form 𝛼 → 𝛽, where 𝛼 and 𝛽 are strings of non-terminals and
terminals - i.e., 𝛼, 𝛽 ∈ (Σ ∪ 𝑉)∗

• A context free grammar (CFG) has the restriction that 𝛼 is a single non-
terminal; a context sensitive grammar does not.

• A language that can be generated by a CFG is said to be a context free
language.

• All regular grammars are context-free, but not all context free grammars
are regular.

17Syntactic Analysis

IEL Context Free Grammar (& RE)

18

CFG

RE

Syntactic Analysis

Left and Right derivations
• Determined by the order in which we apply productions

• Left-derivation: expand the leftmost non-terminal first

• All tokens of the same kind can be interchanged without affecting the
program’s phrase structure
• For example, literal 5 and 2 are both tokens of type intT

19Syntactic Analysis

Example:
A left-derivation of (5 − 2) ∗ 6

20

Grammar:

Derivation: Exp → Exp Op Exp (1)
→ lpT Exp rPt Op Exp (3)
→ lpT Exp Op Exp rPt Op Exp (1)
→ lpT intT Op Exp rPt Op Exp (2)
→ lpT intT subT Exp rPt Op Exp (4)
→ lpT intT subT intT rPt Op Exp (2)
→ lpT intT subT intT rPt mulT Exp (4)
→ lpT intT subT intT rPt mulT intT (2)

(5 - 2) * 6
Syntactic Analysis

CFG: A simple example
Consider the following (imperfect!) CFG for arithmetic expressions

21

Grammar:
(1) E → E + E
(2) E → E - E
(3) E → E * E
(4) E → E / E
(5) E → (E)
(6) E → id

Find a left derivation of (a+b)*c

E → E * E (3)
→ (E) * E (5)
→ (E + E) * E (1)
→ (id + E) * E (6)
→ (id + id) * E (6)
→ (id + id) * id (6)

Syntactic Analysis

CFG: A simple example
Consider the following (imperfect!) CFG for arithmetic expressions

22

Grammar:
(1) E → E + E
(2) E → E - E
(3) E → E * E
(4) E → E / E
(5) E → (E)
(6) E → id

Find a left derivation of a * b + c

E → E + E (1)
→ E * E + E (3)
→ id * E + E (6)
→ id * id + E (6)
→ id * id + id (6)

E → E * E (3)
→ id * E (6)
→ id * E + E (1)
→ id * id + E (6)
→ id * id + id (6)

OR

Syntactic Analysis

CFG: A simple example
Consider the following (imperfect!) CFG for arithmetic expressions

23

Find a left derivation of a * b + c

E → E + E (1)
→ E * E + E (3)
→ id * E + E (6)
→ id * id + E (6)
→ id * id + id (6)

E → E * E (3)
→ id * E (6)
→ id * E + E (1)
→ id * id + E (6)
→ id * id + id (6)

E

E + E

id id

E * E id

E

E * E

id id

E + Eid

OR

Parse Trees:

Syntactic Analysis

Operator Precedence & Associativity
• A grammar that produces more than one parse tree for a sentence is
ambiguous.

• Precedence determines the order in which operators of different levels
of precedence are executed
• Ex: a * b + c Þ (a * b) + c

• Associativity determines the order in which operators of the same
precedence are executed
• Left associative – operations are grouped from the left

• Ex: a + b + c Þ (a + b) + c
• Right associative – operations are grouped from the right

• Ex: a = b = c; Þ a = (b = c); // valid in C
• Solution: Revise the grammar to remove the ambiguity – must describe

the same language though!
• Let the new grammar reflect operator precedence and associativity.

24Syntactic Analysis

CFG for Arithmetic Expressions

25

Grammar:
(1) Expr ® Expr + Term
(2) Expr ® Term
(3) Term ® Term * Factor
(4) Term ® Factor
(5) Factor ® (Expr)
(6) Factor ® id

Find a left derivation of a * b + c
Expr ® Expr + Term

® Term * Factor + Term
® Factor * Factor + Term
® id * Factor + Term
® id * id + Term
® id * id + Factor
® id * id + id

Syntactic Analysis

Left / Right Recursive Grammars
• Left Recursive: S ® S a Q

• Right Recursive S ® Q a S

• Later, we’ll see that some parsing strategies cannot be applied to
grammars with left recursion
• There are techniques to remove left recursion

26Syntactic Analysis

